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Fluid mechanics plays a crucial role in everyday life, enabling the selection of accessories, 
materials, and various components essential for a system through which fluid flows. 
Pressure drop stands out as one of the most relevant factors in the design of fluid flow 
systems. However, analytical and experimental physical methods can increase these 
analyses' costs and time. Hence, in this study, statistical tools are employed to carry out 
specific experiments supported by numerical fluid simulation, aiming to comprehend the 
pressure drop behavior in a fluid as it passes through a globe valve. This valve, in turn, 
possesses distinct operating and manufacturing characteristics. The methods employed 
encompass a complete factorial system of response surface as support to construct the 
experimental design path through computational fluid dynamics. Among the key findings, 
it is demonstrated that, for systems with relatively low flow rates, the valve opening 
percentage does not exhibit a significant relationship with fluid pressure drop. 
Conversely, significant effects are observed for systems with relatively high flow rates 
regarding the valve opening percentage and pressure drop. It can be inferred that the 
integration of statistical experimental design techniques and computational fluid 
dynamics constitutes a valuable resource for studying the pressure drop of a fluid passing 
through a system. 
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1. Introduction 
 

The application of Computational Fluid Dynamics (CFD) in systems involving hydraulic valves is 
essential for enhancing performance, efficiency, and safety while concurrently reducing costs and 
development time. This approach enables a more precise and efficient focus on the design and 
operation of valves across various industrial and engineering applications. 

Design and optimization through CFD allow the simulation of fluid flow through valves, analyzing 
how their design influences efficiency, pressure loss, control capacity, and lifespan. This facilitates 
the optimization of the design to meet the specific requirements of a given system, as presented in 
[1-3]. Moreover, by identifying areas where energy losses occur in the simulated system, these losses 
can be minimized, significantly impacting energy efficiency and operational costs. 
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CFD tools also contribute to cost reduction in development and testing, as adjustments can be 
made in a computational environment to achieve the expected results, thereby improving the 
performance and safety required by the design. Additionally, the application of Design of 
Experiments (DOE) in fluid mechanics aids in the analysis of developed tests, providing a valuable 
assessment of fluid behavior in simulated systems and optimizing performance efficiently and 
effectively, as indicated in [4-8]. 

Furthermore, CFD analysis allows for the study of the effects of hydraulic jumps caused by 
obstacles in the path of a fluid, significantly affecting its behavior. This leads to an increase in the 
Reynolds number and, consequently, an increase in fluid energy, as demonstrated in the work of 
Jasim et al., [9]. CFD is widely employed in various studies to examine the thermal and pressure drop 
effects of fluid flow through corrugated or obstructed surfaces, as shown in [10-15]. 

Measuring the pressure drop of a fluid passing through pipes and fittings is crucial, as it impacts 
the power and energy consumption of devices driving the fluids, thereby influencing investment, 
operational costs, and maintenance, as indicated in [16-21]. 

In works such as Qingyun et al., [22], the behavior of fluid flow through a control valve is simulated 
to obtain a model for predicting the flow coefficient through the valve, varying opening positions and 
flow velocities. In other studies, such as Garg et al., [23], the effect of air pressure flowing through a 
pipe is determined by analyzing leakage behavior in the pipe, all through the application of CFD 
techniques. Reich's work [24] evaluates the behavior of steam flow through a valve by adjusting 
control input conditions, such as flow velocities. Serani et al., [25], conducted a study using adaptive 
sampling methods linked to the CFD simulation process to optimize the performance of the dynamic 
fluid system they studied. 

With the aforementioned, it is demonstrable that the use of CFD tools for systems involving the 
behavior of fluid through a system, such as a globe valve, allows the evaluation of pressure drop 
effects by varying conditions such as valve opening percentage, valve material roughness, and flow 
velocity through the system. 

 
2. Materials and Methods 

 
It is essential to model the dynamic fluid behavior of a fluid passing through a globe valve system 

to evaluate the system's pressure drop under specific initial process conditions. To achieve this, the 
analysis is implemented through a Design of Experiments (DOE) that allows for correlating the tests 
applied at each stage of the process, simulated through CFD. 

This is where an analysis of variance (ANOVA), applying response surfaces in statistical tools used 
for a DOE, enables an understanding of the relationship between independent and dependent 
variables, as explained in [26]. 

In a design of experiments, experiments are planned and executed to explore how independent 
variables (factors) affecting a dependent variable (response) are systematically designed to obtain 
data that helps understand the influence of factors on the response variable and, simultaneously, 
find optimal conditions in a simulated design space. 

In the current study, a response surface-based design of experiments will be applied for a 
complete 3^3 factorial design, with three factors and, for each of these, three levels of quantitative 
variation, along with a quantitative response variable. This results in 27 treatments for a good 
approximation of the result in a regression equation. 
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The factors chosen for the DOE are the surface roughness of the globe valve material (Ra), the 
valve opening percentage (%A), and the flow rate (Q). The response variable is the pressure drop (ΔP) 
expressed in kPa. 

The choice of the application range will be based on the operating values in this type of system. 
The Ra of materials used for hydraulic valves may vary depending on the type of metal and the 
manufacturing process and is generally measured in micrometers µm. For three common metals used 
in hydraulic valves, such as Stainless Steel, Brass, and Aluminum, Ra values typically fall within the 
following operating range: Stainless Steel from 0.2 to 0.6 µm, Brass from 0.8 to 1.6 µm, Aluminum 
from 1.6 to 3.2 µm. Therefore, the factors and treatment levels will be expressed as shown in Table 
1. 

 
Table 1 

Factors implemented in the DOE 

Maximum level: +1 Medium level: 0 Minimum level: -1 Factors 

3.2 1.7 0.2 Ra [µm] 
100 60 20 %A [%] 
0.03 0.0155 0.001 Q [m3/s] 

 
To initiate the CFD simulation, we begin by obtaining the Computer-Aided Design (CAD) of the 

target globe valve, as illustrated in Figure 1 below. 
 

 
Fig. 1. Geometry of the studied globe valve, units in mm 

 
The volumetric mesh is generated, and boundary conditions, including entry, exit, and wall 

effects, are assigned. Mesh inflation conditions were applied during volumetric meshing to model 
the boundary layer effects of the fluid as it passes through the valve passage. Figure 2 below shows 
the setup of the system. 
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Fig. 2. Generated volumetric meshing of the system 

 
When conducting numerical analysis and modeling of the behavior of fluid flowing through a 

globe valve, it is essential to activate the relevant equations for the effective implementation of the 
process. These equations include the energy equation, momentum equation, continuity equation, 
viscosity equation, among others. 

The development of these equations is achieved through CFD analysis, utilizing tools for fluid flow 
behavior analysis. This involves working with a set of equations specifically tailored for the k-ε 
turbulence model, represented by equations (1) and (2). 

 
𝜕
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In these equations, 𝑢 is the fluid velocity, Gk represents the generation of turbulent kinetic energy 

due to mean velocity gradients, while Gε represents the generation of ε. Γk and Γε denote the effective 
diffusivity of k and ε, respectively. YM represents the contribution of fluctuating expansion in 
compressible turbulence to the overall dissipation rate. Sk and Sε are user-defined source terms, and 
the C values are design constants. 
 
3. Results  
 

Once the experiments supported by the CFD tool have been conducted, the treatment table is 
obtained based on the levels of the independent variables used, along with its corresponding result 
in the response variable, which, in this research, is the pressure drop. Table 2 below presents the 
developed Design of Experiments (DOE), and after this, the behaviors of these treatments in the CFD 
program will be illustrated. 
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Table 2 

DOE results performed for globe valve system 

Q %A Ra ΔP 

0.001 20 0.2 0.225 

0.0155 20 0.2 55.108 

0.03 20 0.2 213.88 

0.001 60 0.2 0.067 

0.0155 60 0.2 14.223 

0.03 60 0.2 59.133 

0.001 100 0.2 0.049 

0.0155 100 0.2 11.63 

0.03 100 0.2 43.813 

0.001 20 1.7 0.249 

0.0155 20 1.7 55.95 

0.03 20 1.7 216.155 

0.001 60 1.7 0.065 

0.0155 60 1.7 13.809 

0.03 60 1.7 58.255 

0.001 100 1.7 0.049 

0.0155 100 1.7 11.474 

0.03 100 1.7 43.343 

0.001 20 3.2 0.247 

0.0155 20 3.2 56.731 

0.03 20 3.2 220.079 

0.001 60 3.2 0.065 

0.0155 60 3.2 13.831 

0.03 60 3.2 58.04 

0.001 100 3.2 0.051 

0.0155 100 3.2 11.553 

0.03 100 3.2 41.678 

 
The results are depicted through pressure profiles for each treatment configuration conducted in 

the 27 DOE experiments. Figure 3 below illustrates the pressure drop behavior as the fluid flows 
through the globe valve, considering a minimum valve opening level and varying the flow rate and 
surface roughness within their respective ranges of values. 
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Fig. 3. Tests for pressure drop for a minimum valve opening level 

 
Based on the visual results presented in the previous figure, it is noteworthy that the variation in 

pressure drop becomes evident as the fluid flow rate increases. In contrast, the impact is less 
pronounced when maintaining a constant flow rate while varying the surface roughness. 

In Figure 4 below, the schematic sequence is replicated for a medium valve opening level. 
 

 
Fig. 4. Tests for pressure drop for a medium valve opening level 
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Similar to Figure 3, the pressure drop behavior is primarily influenced by increasing flow values 

and is less significantly affected by variations in the surface roughness of the valve. As the final 
diagram completes the 27 treatments, Figure 5 illustrates the pressure drop of the fluid when the 
globe valve is at its maximum opening percentage. 

 

 
Fig. 5. Tests for pressure drop for a maximum valve opening level 

 
For the maximum valve opening percentage, the pressure drop values are displayed as the 

minimum from the conducted experiments, varying both the flow rate and the roughness. Due to 
complications in the visual analysis of the results, the statistical tool of variance analysis (ANOVA) is 
employed. This tool enables the correlation of all results and helps identify which factors are 
genuinely significant for the investigated system. as shown in Table 3 below. 
 

Table 3 
ANOVA of the simulated system 

Sources of variation Sum of squares DF Mean sum of square F-ratio P-value 

A: Q 36548.9 1 36548.9 85.74 0.0000 
B: %A 16936.7 1 16936.7 39.73 0.0000 
C: Ra 0.0828245 1 0.0828245 0.00 0.9890 
AA 4035.66 1 4035.66 9.47 0.0068 
AB 22594.7 1 22594.7 53.01 0.0000 
AC 0.724717 1 0.724717 0.00 0.9676 
BB 5546.74 1 5546.74 13.01 0.0022 
BC 8.42358 1 8.42358 0.02 0.8899 
CC 0.0538338 1 0.0538338 0.00 0.9912 

Total error 7246.28 17 426.252   
Total (corr.) 113756, 26    
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The ANOVA Table 5 partitions the variability of ΔP into separate components for each effect, then 

assesses the statistical significance of each effect by comparing its mean square against an estimate 
of the experimental error. In this case, five effects have a P-value less than 0.05, indicating their 
significant difference from zero at a 95.0% confidence level. 

By excluding the effects of non-significant factors and their interactions, the R-Square statistic 
suggests that the adjusted model explains 93.621% of the variability in PD. The adjusted R-squared 
statistic, more suitable for comparing models with different numbers of independent variables, is 
92.1022%. The standard error of the estimate reveals that the standard deviation of the residuals is 
18.5888. The mean absolute error (MAE) of 14.5004 represents the average value of the residuals. 
The Durbin-Watson (DW) statistic tests the residuals for significant correlations based on the data 
order. Since the P-value is greater than 5.0%, there is no indication of serial autocorrelation in the 
residuals at the 5.0% significance level. 
 

 
Fig. 6. Pareto diagram of the standardized effect for ΔP of the system 

 
The Pareto diagram depicted in Figure 6 visually displays the significant effects of the conducted 

experiments concerning the response variable. It indicates that, to a greater extent, the maximum 
value of the flow rate is the effect most closely related to the pressure drop in the system. 
Simultaneously, the minimum value of the opening percentage significantly influences the pressure 
drop. However, it is noteworthy that the surface roughness does not significantly affect the pressure 
drop. 

 

 
Fig. 7. Plot of main effects with respect to ΔP of the system 
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From the preceding Figure 7, we can emphasize the non-linearity of the factors Q and %A in the 

valve system concerning the pressure drop ΔP. This highlights the impact of these effects on the 
behavior of the response variable. 

 

 
Fig. 8. Effects interaction plot for the ΔP of the system 

 
The interaction of effects illustrated in Figure 8 reveals that for the minimum level of Q, the 

variation in %A is not significant for the ΔP of the system. However, for the medium and maximum 
levels of Q, the variation in %A becomes indeed significant for the ΔP of the system. 

 

 
Fig. 9. Contour map of the pressure drop of a fluid across the valve 

 
In the preceding Figure 9, the behavior of the pressure drop is visually depicted through color 

profiles of the fluid passing through a globe valve. It emphasizes that the lower the opening 
percentage and the higher the flow, the greater the value of the pressure drop. Subsequently, the 
regression model for the evaluated system is obtained and represented as follows: 
 
∆𝑃 = 33.3123 + 4317.48Q −  2.03044%A + 123352Q2 − 74.8144Q%A + (1.24171E − 10)QRa + 0.0190031%A2                    (3) 
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4. Conclusions 
 

An analysis utilizing Design of Experiments (DOE) statistical techniques for a response surface 
model of the experimental factors, along with the application of Computational Fluid Dynamics (CFD), 
enabled the numerical prediction of the pressure drop behavior of a fluid as it passes through a globe 
valve. 

A notable finding is that the roughness of materials commonly used for valve manufacturing does 
not significantly impact the pressure drop of a fluid flowing through these systems. However, the 
opening percentage of the globe valve proves to be significant, especially in scenarios where the flow 
is relatively high. 

The methodology employed to derive equations that incorporate various influencing factors on 
pressure drop can be applied to a range of accessories within the field of fluid mechanics. This 
approach yields an academic product derived from computational experimentation. 

It is recommended to pursue similar studies involving various types of accessories within fluid 
mechanics. This approach serves as a valuable method for teaching and learning in the realms of 
computational fluid mechanics and statistical analysis through the application of the Design of 
Experiments (DOE). 
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