AUTÓNOMA DEL CARIBE

— LA UNIVERSIDAD —

MINIMIZACIÓN DE LA GENERACIÓN DE ENTROPÍA Y OPTIMIZACIÓN TERMOECONÓMICA PARA EL ANÁLISIS DE INTERCAMBIADORES DE CALOR DE TUBO Y CORAZA CON CAMBIOS DE FASE.

Autor: Ing. Jesus David Jimenez Aguilar.

Autor: JESUS DAVID JIMENEZ AGUILAR, Ing. Proyecto de grado para optar al titulo de magister en Ingeniería Mecánica.

Directores GUSTAVO ADOLFO GUZMAN REYES, Msc. Profesor Tiempo Completo del Programa de Ingeniería Mecánica.

DIEGO MENDOZA MUÑOZ, PhD. Asesor interdisciplinar externo.

INTRODUCCIÓN

Intercambiadores de Calor:

Son dispositivos que hacen posible la transferencia de calor [1].

✓Condensación / Evaporación ✓ Calentamiento / Enfriamiento Generación de entropía – Exergía destruida: Son indicadores que permiten cuantificar el grado de irreversibilidad de un proceso dado [3].

Alrededores

Q

Sgen

 T_{alr}

 $\frac{Q}{T_{alr}}$

✓ Transferencia de Calor ✓ Caída de Presión

Sistema

Frontera

Transferencia $\overline{}$

Transferencia

 $\frac{Q}{T_{sis}}$

de entropía

de calor

Figura 1: Intercambiador de calor de tubo y coraza. [1].

PLANTEAMIENTO DEL PROBLEMA

✓ Poca información sobre modelos y métodos que permitan el diseño térmico y mecánico de intercambiadores de calor de tubo y coraza en presencia de cambios de fase, siendo este fenómeno muy frecuente en los procesos industriales.

Figura 3: Bibliografías [6] [10].

✓La información científica presente en la actualidad enfocada al diseño de intercambiadores de calor trata por separado modelos de diseño térmico y termoeconómicos.

Punto Optimo de diversas variables Fuente propia.

PREGUNTAS DE INVESTIGACIÓN

✓¿Cuál es el óptimo termodinámico y termoeconómico en los intercambiadores de calor de tubo y coraza que presenten cambios de fase teniendo en cuenta las variables de diseño y operación?

✓¿Cuáles son las variables mas influyentes en el proceso de generación de entropía y en su costo?

✓¿De que forma estas variables impactan en el proceso de generación de entropía y en el costo?

✓¿Cómo se podría lograr un diseño optimo basado en los modelos termoeconómicos y termodinámicos en los intercambiadores de calor de tubo y coraza?

Fuente: Revista informaBTL

A UNIVERSIDAD

- ✓ A nivel industrial permitirá generar a las empresas un ahorro económico en términos de diseño y un bajo impacto ambiental indirecto.
- Buscar o identificar un balance en términos económicos y termodinámicos que traerá como resultado una minimización de la generación de entropía y por ende un bajo impacto ambiental.
- ✓ Al grupo de investigación GIIMA de la Universidad Autónoma del Caribe, este proyecto permitirá una gran contribución y generación de nuevo material científico e ingenieril, centrado en la minimización de la generación de entropía y optimización termoeconómica.
- Aporte científico enfocado a una metodología de diseño optimo de intercambiadores de calor de tubo y coraza que presentan cambio de fase.

OBJETIVOS

OBJETIVO GENERAL

 Optimizar, desde el punto de vista termodinámico y termoeconómico, el diseño y la operación de un intercambiador tipo tubo y coraza bifásico a fin de generar procesos energéticamente eficientes en el sector industrial.

OBJETIVOS ESPECÍFICOS

1. Formular un modelo matemático que permita estimar el desempeño termodinámico y termoeconómico de un intercambiador de calor en función de las variables de diseño y operación.

2. Determinar mediante un análisis de sensibilidad, la influencia de las variables de diseño y operación sobre el desempeño termodinámico y termoeconómico.

3. Analizar la influencia de los valores óptimos de diseño sobre la exergía destruida y costo termoeconómico del condensado.

METODOLOGÍA

Formulación del modelo matemático de un intercambiador de calor de tubo y coraza.

- ✓ Revisión bibliográfica
 - ✓ Métodos de diseño de intercambiadores de calor de tubo y coraza

✓ Selección y formulación del modelo matemático

- ✓ Variables de diseño
- ✓ Indicador de desempeño termodinámico Eficiencia de segunda ley
- ✓ Estimación del costo del condensado.
- ✓ Programación del modelo
 - ✓ Propiedades termodinámicas y de transporte.
 - ✓ Matlab Caso estudio
- ✓ Validación del modelo
 - ✓ Diseño plasmado en la literatura.

Fuente: Revista informaBTL

METODOLOGÍA

Análisis de sensibilidad del modelo

✓ Selección de las variables.

✓ Combinaciones de las variables

✓ Formulación del análisis de sensibilidad.
✓ Impacto de las variables

Fuente: Revista informaBTL

METODOLOGÍA

Valores óptimos de diseño.

- ✓ Identificación de condiciones optimas.
 - ✓ Optimo termodinámico
 - ✓ Optimo termoeconómico

Fuente: Revista informaBTL

Formulación del modelo matemático de un intercambiador de calor de tubo y coraza.

• Revisión bibliográfica : Métodos de diseño

Formulación del modelo matemático de un intercambiador de calor de tubo y coraza.

Mass Flow Rate v/s Pressure Drop

0.4 0.35 0.3

• Revisión bibliográfica : Métodos de diseño

Formulación del modelo matemático de un intercambiador de calor de tubo y coraza.

• Revisión bibliográfica : Métodos de diseño

de

Propia.

ALGORITMO DE PROGRAMACIÓN

AUTÓNOMA DEL CARIBE

Validación del programa

Proyecto de Grado: "Diseño, construcción y pruebas de un intercambiador de calor de carcasa y tubos para laboratorio de térmicas de la facultad de mecánica de la Escuela superior politécnica de Chimborazo"

Realizado por: Cuadrado Mazón Karina Cecilia

RIOBAMBA – ECUADOR

2010

Aspectos Geométricos	Valor	Unidades]
Diámetro Coraza	102,26	mm	1
Diámetro externo	9,525	mm]
Diámetro Interno	7,745	mm	
Pitch	13,5	mm	
Espaciado del deflector	80	mm	
Numero de pasos	2	-] —
Numero de tiras de sellado	1	-]
Altura de corte del deflector	33	%	
Numero de tubos	26	-]
Numero de deflectores	4	-]
Área del Intercambiador	0,4436	m2	

Tabla 1. Datos de aspectos geométricos. [53]

Validación del programa

	Caso 1	Caso 2
U [w/m2K]	2469,84	2474,2
A [m2]	0,4196	0,54
DP [Pa]	0,55538	0,20737

Error [9/]	Caso 1		Caso 2	
	[ref]	Autor	[ref]	Autor
U	5,42	13	17,75	46
Α	5,39	-	21,7	-
dP	4,4	_	64,2	_

Tabla 4. Datos obtenidos por el programa en Matlab.

Tabla 2. Datos Comparativos establecidos. [53]

Caso de estudio

Análisis de sensibilidad

✓ Arreglo tubular (Triangular y Cuadrada)

- ✓ Espaciado del deflector.
- ✓ Altura de corte del deflector.
- ✓ Diámetro nominal
- ✓ Numero de tubos
- ✓ Numero de pasos por los tubos
- ✓ Pitch (Espaciado entre los tubos)

Tabla 6. Variables y sus valores basados en la Norma TEMA (Tubular Exchanger Manufacturers Association) Fuente: Propia

VARIABLES	ID	Valor _{min}	Valor _{max}
Espaciado del deflector	A	0.2 <i>DS</i>	1 <i>DS</i>
Altura del corte del deflector	В	0.25 <i>DS</i>	0.45 <i>DS</i>
Diámetro exterior	С	3/8 Pulg	2 Pulg
Numero de tubos	D	10	20
Numero de pasos por los tubos	E	2	8
Pitch	F	1.25 <i>do</i>	1.5 <i>do</i>

Análisis de sensibilidad

Figura 6. Metodología del análisis de sensibilidad. Fuente: Propia

Resultados análisis de sensibilidad

AUTONOMA DEL CARIBE

Observaciones:

- El coeficiente de los tubos no sufre cambios.
- Sin importar la condición geométrica el valor del coeficiente convectivo es constante.
- El coeficiente de la coraza es aquel que genera impacto sobre el coeficiente global.

Observaciones:

 Al aumentar el número de Reynolds, disminuye el coeficiente de transferencia de calor de la coraza.

$$h_e = j_{ideal} * CP_s * G_s * Pr^{-\frac{2}{3}} * \left(\frac{u_s}{u_w}\right)^{0.14}$$

- El factor de colburm tiende a disminuir conforme aumenta el Reynolds.
- Al aumentar el espaciamiento, se tiende a aumentar el coeficiente convectivo debido a que disminuye el Reynolds.

Figura 7. Coeficiente global de transferencia de calor vs espaciamiento. Fuente: Propia

Casos	Α	В	С	A1
NP	2	2	2	2
NT	10	10	10	20
LBCH	25%	45%	45%	45%
Pitch	1,5	1,25	1,5	1,25

Tabla 7. Configuración similar a la evidenciada en el proceso cuando NP=2; NT=10 NT=20; pitch=1,25do, %LBCH=0,25 Fuente: Propia

Observaciones:

-Cuando el pitch aumenta el coeficiente global de transferencia de calor también, debido al aumento de la velocidad del fluido.

-El espaciamiento del deflector no posee una influencia significativa sobre el coeficiente global cuando el diámetro de los tubos es mayor a 3/8

Observaciones:

-NP genera un impacto significativo en las condiciones termodinámicas del sistema en diámetros de 3/8"

-La desviación estandar promedio en los arreglos cuadrados con diámetro nominal de 2" es aproximadamente 1.97 $\frac{w}{m^2 k}$ y 2.1 $\frac{w}{m^2 k}$ en triangulares

-En los arreglos de 3/8" la desviación promedio es 37.81 $\frac{w}{m^2k}$.

Casos	D	E	F	D1
NP	2	8	2	8
NT	20	10	20	20
LBCH	25%	45%	45%	45%
Pitch	1,5	1,25	1,5	1,25

Tabla 8. Configuración similar a la evidenciada cuando NP=8; NT=10 NT=20; pitch=1,25do, %LBCH=0,25 Fuente: Propia.

Observaciones:

-Los casos E, F y D1 presentan una disminución del coeficiente global de transferencia de calor debido al aumento de la altura de corte.

Observaciones:

-Existe una desviación estándar aproximada de 39.27 $\frac{w}{m^2 k}$ para arreglos triangulares y 36.09 $\frac{w}{m^2 k}$ para arreglos cuadrados cuando el diámetro es 3/8"

Casos	Н	H1
NP	8	8
NT	10	20
LBCH	45%	45%
Pitch	1,5	1,5

Tabla.9 Configuración similar a la evidenciada cuando NP=8; NT=10 NT=20; pitch=1,5do, %LBCH=0,25 Fuente: Propia.

Observaciones:

-El NT afecta directamente al coeficiente global de transferencia de calor, debido a la formación de vórtices.

Observaciones:

-La exergía destruida en diámetros nominales de 3/8" tiende a aumentar, mientras que con diámetros nominales superiores a 3/8" toma un valor constante.

	3/8"	3/8" 1" 5/4" 2"				
Desviación						
[kW]	8,35769E-05	4,6528E-06	2,1426E-06	6,9124E-07	Triangular 30°	
Desviación						
[kW]	6,63243E-05	3,4198E-06	1,458E-06	4,4956E-07	Triangular 60°	
Desviación						
[kW]	6,34725E-05	2,6159E-06	1,0707E-06	2,9173E-07	Cuadrado 45°	
Desviación						
[kW]	3,61329E-05	1,8415E-06	8,7654E-07	2,8198E-07	Cuadrado 90°	

Tabla 10.Valores de desviación y dispersión de la exergíadestruida.Fuente: Propia

Observaciones:

-La desviación estándar indica que el aumento de la exergía destruida no es tan significativo en los arreglos para este caso de estudio.

Observaciones:

-El costo termoeconómico unitario del condensado depende para este caso de estudio exclusivamente del área de transferencia de calor.

OPTIMIZACIÓN TERMODINÁMICA Y TERMOECONÓMICA

	do [m]	Pitch [-]	LBCH [-]	LB [-]
Valor Aleatorio Inicial	0,033528	1,3	0,3	0,4
Máximos	0,060452	1,5	0,45	1
Mínimos	0,01715	1,25	0,25	0,2

Tabla 11. Valores de las variables continuas con sus condicionesiniciales, máximos y mínimos. Fuente: Propia

- Se aplico el programa MATLAB usando el comando de optimización fmincon (método de punto interior)
- Es necesario definir los vectores de máximos, mínimos y de condiciones iniciales.

Objetivo:

-Arreglo y configuración que garantice menor área de transferencia de calor.

-Arreglo y configuración que garantice minimizar la exergía destruida.

Cuando NP= 2 y NT=10					
Arreglo	do [m]	Pitch [-]	LBCH [-]	LB [-]	
Triangular 30°	0,060452	1,29994172587070	0,313785717560285	0,400471727312740	
Triangular 60°	0,060452	1,30014174984766	0,300088866841576	0,400076364418810	
Cuadrado 45°	0,060452	1,30008561095566	0,300043175751110	0,400046792878854	
Cuadrado 90°	0,060452	1,30007958953463	0,300046795896972	0,400038840379714	
		Cuando NP= 8 y	/ NT=10		
Arreglo	do [m]	Pitch [-]	LBCH [-]	LB [-]	
Triangular 30°	0,060452	1,29999627096574	0,299978947905247	0,400030809679234	
Triangular 60°	0,060452	1,29998946283332	0,299974680497031	0,400021441309357	
Cuadrado 45°	0,060452	1,29999795737308	0,299985373664016	0,400020930047708	
Cuadrado 90°	0,060452	1,29999788989298	0,299992751287979	0,400009600083490	
		Cuando NP= 2 y	/ NT=20		
Arreglo	do [m]	Pitch [-]	LBCH [-]	LB [-]	
Triangular 30°	0,060452	1,30019176922915	0,300084031177652	0,400090320353363	
Triangular 60°	0,060452	1,30014165815076	0,300062773412995	0,400067413954171	
Cuadrado 45°	0,060452	1,30008320581739	0,300027019260020	0,400032415394134	
Cuadrado 90°	0,060452	1,30008054089553	0,300038888806379	0,400047824406172	
Cuando NP=8 y NT=20					
Arreglo	do [m]	Pitch [-]	LBCH [-]	LB [-]	
Triangular 30°	0,060452	1,30002100044807	0,300001478794825	0,400039688547429	
Triangular 60°	0,060452	1,29999502427318	0,299989744274611	0,400021174991043	
Cuadrado 45°	0,060452	1,30000658647025	0,299992844635615	0,400023229882122	
	0.060452	1,30000932690249	0,299998310552951	of 0.400017369042736	

Tabla 12. Resultados del proceso de optimización para minimizar la destrucción de exergía. Fuente: Propia

Arreglo	do [m]	Pitch [-]	LBCH [-]	LB [-]
Triangular 30°	0,01715	1,25	0,25	1,00
Triangular 60°	0,01715	1,25	0,25	1,00
Cuadrado 45°	0,01715	1,25	0,25	1,00
Cuadrado 90°	0,01715	1,25	0,25	1,00

Observaciones:

-Sin importar el valor de las variables discretas la configuración obtenida es la misma.

Tabla 12. Resultados del proceso de optimización minimizar elárea de transferencia de calor Fuente: Propia

CONCLUSIONES

- Se ha planteado una metodología que permite diseñar intercambiadores de calor de tubo y coraza con cambio de fase en la sección de los tubos con diferentes arreglos de diseño a su vez con un alto grado de confiabilidad.
- Para el caso de estudio plasmado los efectos de la entropía generada solo recaen en el proceso de transferencia de calor y no en la caída de presión debido a que es un factor no muy significativo.
- Aquellos intercambiadores de calor diseñados con tuberías de 3/8" presentan bajos costos de condensado, mientras que aquellos diseñados con tuberías superiores presentan altos costos de condensado.
- Los arreglos triangulares a 30° y 60° presentan tendencias muy similares en sus coeficientes globales pero difieren en sus exergías destruidas y costos de condensado.

RECOMENDACIONES

- Cuantificar la influencia de otros tipos de fluidos de trabajo tales como R410A, R134A, amoniaco entre otros en el proceso de análisis y optimización termodinámica y termoeconómica.
- Establecer un rango de condiciones de temperatura, presión y flujos másicos en la sección de los tubos y coraza para así, calcular condiciones óptimas de trabajo que permitan obtener una mínima generación de entropía y bajo costo de condensado.
- Plasmar una metodología para el diseño, análisis, optimización termoeconómica y proceso de minimización de la generación de entropía en otros tipos de intercambiadores de calor que presenten cambio de fase.
- Realizar un proceso de minimización de la generación de entropía, análisis y optimización termoeconómica en otros dispositivos de ingeniería tales como compresores, turbinas, evaporadores, ciclos de generación de potencia y ciclos combinados.

- [1] M. B. Reyes Rodriguez, J. L. Moya Rodriguez y O. M. Cruz Fonticiella, «Ecological Impact of Shell and tube heat exchangers.,» Ingenieria Energética Vol. XXXVI, Mexico D.F, 2014.
- [2] A. C. Yunus y J. G. Afshin, «Análisis de los intercambiadores de calor,» de *Transferencia de Calor y de Masa*, Mexico D.F, Mc Graw Hill, 2011, pp. 639-650.
- [3] M. A. M y S. M. Y, «Thermodynamic Optimization,» Faculty of Engineering and Applied Science, St. John's., Canada , 2012.
- [4] G. Jiangfeng, L. Cheng y X. Mingtian, «Optimization design of shell and tube heat exchanger by entropy generation minimization and genetic algorithm,» *ELSEVIER*, vol. I, pp. 1-7, 2010
- [5] E. A. Pastén Mejías, «Análisis Exergético y Termoecónomico de intercambiadores de calor de tubo y coraza,» *Revista de Ingenieria-Universidad de Talca,* vol. II, p. 1, 2012.
- [6] G. Jiangfeng, L. Cheng y X. Mingtian, «Optimization design of shell and tube heat exchanger by entropy generation minimization and genetic algorithm,» *ELSEVIER*, vol. I, pp. 1-7, 2010.

- [7] M. B. Reyes Rodriguez, J. L. Moya Rodriguez, M. Cruz Fonticiella y R. Mestizo Cerón, «Optimización de intercambiadores de tubo y coraza mediante la tecnica de recocido simulado,» Centro Azucar, vol. 40, pp. 1-13, 2013.
- [8] M. B. Reyes Rodriguez, J. L. Moya Rodriguez, M. Cruz Fonticiella, E. Fírvida Donéstevez y J. A. Velázquez-Pérez, «Automatización y optimización del diseño de intercambiadores de calor de tubo y coraza mediante el método de Taborek,» *Ingenieria Mecanica ,* vol. 17, nº 1, pp. 78-89, 2014.
- [9] E. A. Pastén Mejías, «Análisis Exergético y Termoecónomico de intercambiadores de calor de tubo y coraza,» *Revista de Ingenieria-Universidad de Talca,* vol. II, p. 1, 2012.
- [10] C. S. C. A. a. B. S. Kotcioglu. I, «Second Law Analysis and Heat Transfer in a Cross-Flow Heat Exchanger with a New Winglet-Type Vortex Generator,» *Energy*, vol. II, nº 35 (9), pp. 3686-3695, 2010.
- [11] A. Fakheri, «Second Law Analysis of Heat Exchangers,» ASME Journal of Heat Transfer, vol. I, nº 111802, p. 132, 2010.
- [12] M. a. L. S. Arivazhagan, "Entropy Generation Minimization of Shell and Tube Heat Exchanger with Porous Medium," Experimental Techniques, vol. I, nº 10.1111, pp. 1567-1747, 2011.
- [13] S. Z. a. Z. S. M. Shuja, «Thermoeconomic Considerations in the Design and Analysis of a Finned Heat Sink Array: The Effect of Material Cost,» *International Journal of Exergy,* vol. III, nº 9, pp. 370-387, 2011.
- [14] M. E. b. M. R. H. Sadeghzadeh, «Techno-economic optimization of a shell and tube heat exchanger,» Energy Conversion and Management, vol. I, nº 93, pp. 84-91, 2014.

- [15] B. Khireddine y B. Chérif, «Optimisation of the design of shell and double concentric tubes,» CrossMark, vol. IV, nº 1, p. 1371–1381, 2014.
- [16] F. V. Ashkan Alimoradi, «Prediction of heat transfer coefficients of shell and coiled tube heat,» International Journal of Thermal Sciences, vol. I, nº 107, pp. 196-208, 2016.
- [17] A. C. Yunus y J. G. Afshin, «Tipos de Intercambiadores de Calor,» de *Transferencia de Calor y de Masa*, Mexico D.F, Mc Graw Hill, 2011, pp. 630-631.
- [18] K. s. Ramesh y P. S. Dusan, «Classification According to Construction Feactures,» de Fundamentals Of Heat Exchanger Design, Canada, JOHN WILEY & SONS, INC., 2003, pp. 56-73.
- [19] A. C. Yunus y J. G. Afshin, «Análisis de los intercambiadores de calor,» de *Transferencia de Calor y de Masa*, Mexico D.F, Mc Graw Hill, 2011, pp. 639-650.
- [20] K. s. Ramesh y P. S. Dusan, «Overview of Heat Exchanger Design,» de *Fundamentals of Heat Exchanger Desing*, Canada, John wiley & Sons, 2003, pp. 78-94.
- [21] S. P. B. ROJAS, «DISEÑO DE UN MÓDULO DE INTERCAMBIADOR DE CALOR DE CORAZA Y TUBOS,» Universidad Santo Tomas, vol. I, nº 1, pp. 16-54, 2014.

- [22] K. R. y. P. Dusan, «Log-Mean Temperature Difference Correction Factor F,» de Fundamentals Of Heat Exchanger Desing, Canada, John Wiley & Sons, 2003, pp. 187-195.
- [23] A. Y. y. J. Afshin, «Intercambiadores de calor de pasos múltiples,» de *Transferencia de calor y de masa*, Mexico D.F, Mc Graw Hill , 2011, pp. 643-646.
- [24] D. Q. KERN, «Temperatura,» de *Procesos de transferencia de calor*, Mexico D.F, Compañia Editorial Continental, S.A De C.V Mexico, 1999, p. 114.
- [25] J. Holman, «Método de la eficacia NUT,» de *Transferencia de calor*, Mexico D.F, Compañia Editorial Continental, S.A De C.V Mexico, 1999, pp. 502-515.
- [26] J. Holman, «Diferencia de temperatura media logarítmica,» de Transferencia de calor, Mexico D.F, Compañia Editorial Continental, S.A De C.V Mexico, 1999, pp. 494-501.
- [27] K. s. R. y. P. S. Dusan, «EFFECTIVENESS–NUMBER OF TRANSFER UNIT RELATIONSHIPS,» de Fundamentals of Heat Exchanger Desing, Canada, John wiley & Sons, 2003, pp. 114-131.
- [28] O. A. Jaramillo, «INTERCAMBIADORES DE CALOR,» Centro de Investigación en Energía., Mexico D.F, 2007.

AUTÓNOMA DEL CARIBE

- [29] Javier Ignacio Carrero Mantilla, «Metodo NTU,» de *Equipos de transferencia de calor: Una guia de estudio.*, Bogota D.C, UNIBIBLOS, 2008, pp. 21-29.
- [30] K. s. R. y. P. S. Dusan, «THE P-NTU METHOD,» de *Fundamentals of Heat Exchanger Desing*, Canada, John wiley & Sons, 2003, pp. 139-170.
- [31] K. s. R. y. P. S. Dusan, «The y-P Method,» de *Fundamentals of Heat Exchanger Desing*, Canada, John wiley & Son, 2003, pp. 210-212.
- [32] J. I. C. Mantilla, «Caidas de presión,» de *Equipos de transferencia de calor: Una guía de estudio*, Bogota D.C, UNIBIBLOS, 2008, pp. 13-14.
- [33] D. J. D'Adamo, D. A. Gronskis y I. S. Juskoff, «Condensación,» Mexico D.F, 2016.
- [34] J. I. C. Mantilla, «Teoría de condensación y ebullición.,» de *Equipos de transferencia de calor: Una guia de estudio.*, Bogota D.C, UNIBIBLOS, 2008, pp. 55-58.
- [35] P. Fernandez Diaz, «Condensación y Vaporización.,» *Ingenieria Termica,* vol. I, nº 10, pp. 3-23, 2011.
- [36] M. Moran, H. Shapiro, D. Boettner y M. Bailey, «Thermoeconomics,» de Fundamentals of Engineering Thermodynamics, United States of America, John Wiley & Sons, Inc., 2011, pp. 395-400.

AUTÓNOMA DEL CARIBE

- [37] J. Villalon, J. Garcia Torrent y E. Querol Aragón, «Termoeconomía y Optimización energetica,» *Fundación Gomez Pardo.*, vol. II, pp. 7-15, 2009.
- [38] J. R. Silva Larrotta, «La termoeconomía como alternativa para mejorar la competitividad industrial,» UniNacional, Bogota D.C, 2015
- [39] Heat-transfer Equipment , <<BASIC DESIGN PROCEDURE AND THEORY, 12.9.4. Bell's method>> Incropera and Dewitt (2001).
- [40] Kulkarni Sweta; SB Jagadish; MB Manjunath, « ANALYSIS COMPARING PERFORMANCE OF A CONVENTIONAL SHELL AND TUBE HEAT EXCHANGER USING KERN, BELL AND BELL DELAWARE METHOD » IJRET: International Journal of Research in Engineering and Technology . May-2014
- [41] J. Taborek., Heat Exchanger Design Handbook, Survey of Shell Side Flow Correlations. Hemisphere Publishing Corporation. Washington-New York-London, 1986.
- [42] J. Taborek., Heat Exchanger Design Handbook, Recommended method: Principles and Limitations. Hemisphere Publishing Corporation. Washington-New York-London, 1986.

GRACIAS

METODOS

METODO DE KERN

- ✓ El coeficiente convectivo presente en la coraza no presenta factores de corrección.
- No toma en consideración las obstrucciones debido a deflectores ni fugas en el cálculo de la caída de presión.

 ✓ J. Taborek recomienda que no se utilice más este método como modelo de diseño [40] [41] [42].

METODO DE BELL

Figura 11: Comportamientodel fluido, método de Bell [39]

METODO DE BELL-DELAWARE

Figura 12: Comportamiento del fluido, método de Bell-Delaware [39] [40] [41]

 ✓ El método Bell o de Bell-Delaware son ampliamente utilizados y han sido recomendados por J. Taborek como los métodos mas precisos publicados en la literatura [40] [41] [42]

Costo termoeconómico del condensado

$$\pi_5 = \frac{Z_{bIC} + \left(1 - \frac{B_3}{B_2}\right)(\pi_w + Z_{bb})}{\left(1 - \frac{B_4}{B_5}\right)}$$

El termino Z_{bb} no fue tenido presente en el desarrollo del costo del condensado.

$$Z_{bIC} = \left(2768 \, A^{0.573} \frac{(1+i)^n * i}{(1+i)^n - 1} + (2768 \, A^{0.573}) * 0, 4 \right) \frac{1}{TF}$$

Método de Hall para estimación del costo del intercambiador.(Valero-Lozano)

PARTES Y ELEMENTOS IC

Figura 13: Elementos de un intercambiador de calor de tubo y coraza[35]

Método de punto interior

Basado en condiciones iniciales, rangos e inecuaciones se busca puntos óptimos.

Figura 14: Punto optimo de un solido Fuente: Mathonline -Wikidot

Factor de ensuciamiento "Fouling"

Son perqueñas resistencias que disminuyen el coeficiente global de transferencia de calor, surgen debido a:

-Acumulación de depósitos por el flujo del fluido.

-Corrosión.

-Productos químicos.

-Crecimiento de algas.

Nota: El factor de incrustación o ensuciamiento es cero en equipos nuevos.

Figura 15: Fouling, Fuente: Heat Exchanger Fouling: Mitigation and Cleaning Techniques